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Dep.Sẽnalesy Comunicaciones.UniversidaddeLasPalmasdeGranCanaria,SPAIN�
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Abstract—To a greatextent, the successof advancedimage-guidedmed-
ical procedureshingeson non-rigid volumeregistration. For example,non-
rigid registration mustbeapplied in interventional approacheswhereintra-
operative information is usedto update high-quality preoperative data; in
follow-up studiesin order to assesstime-evolution of development; aging,
pathology or tr eatment; and in many other applications including inter-
subject variability and population-basedatlasconstruction.

In this paper weexamineseveral computational schemesthat warps one
volumetric datasetonto another. We also explore the inevitable trade-off
betweenthe computational load and the incorporation of sophisticatedsim-
ilarity measures necessaryfor multimodal volumes. Estimated deforma-
tion fields are basedon the variational formulation of Partial Derivative
Equations (PDEs), which includes a similarity and a regularization term.
Wecompare numerical solutionsto this problemusing the Euler-Lagrange
equations(EL), the Finite Elementsdiscretization (FE), and DecoupledOp-
timization over the possibledeformations (DO).

Keywords—Registration,Correlation Coefficient,Finite ElementsMethod,
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I . INTRODUCTION

Advancedcomputer-assistedinterventionsrequire3D warp-
ing methodsto performnon-rigid registrationsamongdifferent
volume datasets,an essentialfeatureof interventionalproce-
dures[1] wherepreoperative dataandmodelsmustbeupdated
usingintraoperativeimagingto successfullymanagenaturaland
inducedalterationsof anatomy. In casessuchasthese,timecon-
sumingimageacquisitionandprocessingis curtailedby oper-
ating room procedures,andthis obviously limits the guidance
that intraoperative imagescan provide. In an effort to over-
camethis obstacle,we suggestwarping high quality preoper-
ative dataandmodelsinto the coordinatesystemof intraoper-
ative real anatomy(scannedby an interventionalimaging de-
vice), which, in turn, is usedto guide the surgical procedure.
Thewarpis obtainedby estimatingadeformationfield andthen
non-rigidlyadaptingtheproeoperativedatato theinteroperative
databy non-rigidly registeringthepreoperativeandintraopera-
tive datasets.Additional applicationsincludefollow-up studies
of the sameindividual by non-rigid registrationof imagedata
(e.g.,developmental[2] andagingeffects[3] studies,degener-
ative pathology[4] andtreatment[5] evolution). Nonrigid reg-
istration is also crucial to intrasubjectcomparison(i.e., in the
constructionof population-basedatlas[6] wheredatasetsfrom
differentindividualsmustberelatedto a canonicalframe).Fur-
ther, non-rigid registrationmust incorporatea priory anatomic
knowledgeinto automaticsegmentationalgorithms,suchas in
the framework of template-driven segmentationproposedby
Warfieldetal. [7].

Severalapproacheshavebeenproposerfor volumedataregis-
trationthatrely on a multi-resolutiondecompositionof thevol-
umes.With regardto non-rigidregistrationalgorithms,thefor-
mulasmustrecognizepotentialmatchesbasedon thesimilarity
of the neighborhoodsto correspondingpoints in both datasets.
Froma mathematicalstandpoint,thesealgorithmsaretypically
encodedin sucha way thatsimilarity functionsbetweenneigh-
borhoodsaredefined. In general,many combinationsarepos-
sible for acceptablelevels of the similarity function , although
theinverseproblemof estimatingthedeformationfield between
bothdatasetsis ill-conceive,a typical problemin regularization
theoryasdefined.For example,to constrainthenumberof so-

lutionsinto asingleonesolution.
An optimalway of includingboththesimilarity andthereg-

ularizationconditionsin an operatingequationis to usemod-
elsbasedon variationalformulationsandon PDEs. For exam-
ple, thewell-known sumof squareddifferencessimilarity func-
tion is usedin [8] with a viscousfluid constraintthat doesnot
needany smalldeformationassumption,in [9] with anelasticity
constraint,solving the PDE with the FE method. Denglerand
Schmidt[10] proposedanopticalflow methodwith anelasticity
constraint,solvedwith amultiresolutionpyramidwith FEM dis-
cretization(utilizing thesignof Laplacianpyramidasthematch-
ing features).Anotherusefulsimilarity measureis thecorrela-
tion index, which considersneighborhoodsto besimilar if their
intensitiesarerelatedby an affine function. This measurewas
applied in [11] with an elasticity constraintas regularization;
solvingthePDEwith theJacobimethod;unlikewisein [12] but
solvingthePDEiteratively with FE.

Thoughtherehasbeensignificanteffortsto solvethenonrigid
registrationproblem,therehasbeenrelatively little researchinto
morecomplex similarity functions,suchasthemutualinforma-
tion broadlyusedfor rigid registration[13], which areessential
for multimodalregistration.However, arbitrarysimilarity func-
tions(see[14] for examples)aredifficult to beincorporatedinto
thecomputationalalgorithmsdueto their lack of mathematical
tractability. This deficiency, fortunately, can be compensated
for by directly computingthe similarity (asopposedto apply-
ing a ananalyticalderivationof thesimilarity function). In this
paper, we will framethevariationalproblemasoneof “equiva-
lent optimization”,andsolve it by determiningthesetof voxel
displacements.Wewill thecomparetheseresultswith thoseob-
tainedusingtheEulerLagrangeequationsandFinite Elements
discretizations.

I I . VARIATIONAL FORMULATION

A commonapproachto nonrigidregistrationlies in establish-
ing thedisplacementfield

��	� �
�� whichminimizesanenergy func-
tional with a similarity anda regularizationtermrelatingto ref-
erenceandcurrentvolumes;thatis, � �� � �
������������ � � �
�� �� � �
�������� � �
�� �� � �
���� � � �
 (1)

where � is the similarity measureand � is the regularization
term. � is usuallyasmoothnessconstraint.

In order to make comparisons,we have chosenthe correla-
tion coefficientasthesimilarity functionandthesumof squared
partialderivativesof thedisplacementastheregularizationcon-
straint. Hence,thecorrelationcoefficient betweentwo random
variables! and " is definedas:#$# � ! � " � � �%�'&	(*)& ( & ) � � (2)

Where &+(,) , is thecrosscovarianceand &	( , &	) arethestandard
deviationsof ! and " respectively. Inherit in thenon-rigid reg-
istration problem,are the intensitiesof two tentatively corre-
spondingvoxels ! and " . The correlationcoefficient is esti-
matedfrom two windows centeredon thosevoxels. However,
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window sizemustbe tradedoff in orderto be local andto har-
vestasufficientnumberof samplesfor ameaningfulestimation.
Thecorrelationcoefficient facilitatessimilarity amongvoxelsif
theintensitiesinsidearerelatedthroughanaffine function.

For theregularizationterm,weuse- �/. 021 �� � �
��*. �3,465 1 (3)

where
�� is the deformationfield, and which is extensively

usedin optical flow applications[15] andessentiallyimposes
a smoothnessconstrainton thedeformationfield.

I I I . DECOUPLED OPTIMIZATION

Fromanumericalpointof view, theminimizationof thefunc-
tional (1), i.e., the estimationof the displacementfield, canbe
viewedasanoptimizationproblem,sincethedisplacementvec-
tors for every voxel aretheparametersthatmustbeoptimized.
Consideredin this way, the functional becomesa function or
costof thesetof displacements;hence,theminimizationof the
functional is equivalent to the minimization of a multi-variate
cost. This relationship,in turn, allows us to conducta numeri-
cal searchfor theminimum,thusavoiding themathematicalin-
tractabilityof complicatedfunctionals.Nevertheless,optimiza-
tion is adauntingtaskthatrequiresacleverapproach.Noticethe
numberof unknown parametersis threetimes(in 3D) thenum-
berof voxelsandthehighly nonlinearnatureof thefunctionals
with nontrivial similarity or regularizationterms.

In this paper, we proposeherea numericalmethod,general
enoughto deal with any similarity function or regularization
termbasedon theminimizationof (1) consideredasa cost. In
orderto avoid gettingstuckembeddedin local minima,andto
accelerateexecutiontime, we have developeda feasible,initial
solution to the optimizationscheme. To this extent, we first
computea displacementfield by local templatematchingon
high structurepointsandsubsequentinterpolation,embbeding
the approachinto a gaussianpyramid. Our implementationre-
lies on partof our previouswork, wherethestructuredetection
is basedon the eigenanalysisof the correlationmatricesof the
gradientof thedatasetsateverypointandweuseaKriging [16]
estimatorto maketheinterpolation[17], [18]. It is interestingto
notethat this approachis ableto dealwith generaltensordata,
suchasdiffusiontensorMRI andhenceit allowsthegeneraliza-
tion of themethodproposedhereto tensordata. Nevertheless,
for the purposesof this paper, any templatematchingmethod
which is ableto provideaninitial solutioncanbeused.

Thenumberof dimensionsof a 3-ddisplacementfield search
spaceis threetimesthenumberof voxels.In orderto savecom-
putationalcost, we decouplethe problemsearchingfor local
minimaateachvoxel. Theoptimizationalgorithmusedis based
onaQuasi-NewtontechniquecalledBFGS[19] . Separatemini-
mizationof eachvoxelneedsknowledgmentof neighborvoxels,
sominimizationof everyvoxeldoesn’t provideusthenearestlo-
cal minimumin the globalsearchspace.To avoid this, several
iterationsto thewholedatasetarecarriedoutuntil minimization
reachesa consistentsolution. To avoid falseoptimizationsthat
the regularizationtermcannotdeal,a medianfilter on eachde-
formationfield componentis carriedout asthe initial field for
thenext iteration.

IV. TWO ALTERNATIVE METHODS

In what follows we comparethe proposedmethodwith the
Euler-Lagrangeapproachandwith a Finite Elementdiscretiza-
tion. A brief introductionto thesetwo methodsis givenbelow.
Bothmethodsareimplementedusingagaussianpyramid.7

Frobenuisnorm

A. Euler-Lagrange

TheEuler-LagrangeMethodconsistsof applyingvariational
calculusto equation(1), andobtainingalist of differentialequa-
tionswhich canbesolved iteratively. This procedureis a diffi-
cult task for non-trivial similarity measuresandregularization
terms. In the casewe have described,the similarity measure
andtheregularizationtermhave beenapproximatedto first and
secondorderof

�� .
UsingEuler-Lagrangeequationsfor theenergy functional(1),

we reachthis linearsystemof equations,definedas8 ( �:9 �<; �=� �?>A@ � � ; �B�DC >�@ � � ; ���DE >�@ � �F��9AG � � �?>IHJ�?>A@ � � (4)8 ) �K9 �<; �L� � >A@ � � ; �M� C >A@ � � ; �=� E >A@ � ���N9AG � � C > H C >A@ � � (5)8�OP�Q9 �R; �L� � >A@ � � ; �M�DC >A@ � � ; �M�SE >A@ � ���T9�G � � E > H E >A@ � � (6)

where8�U and
; UWV arethefirst andsecondordercoefficientsof

the similarity measurerespectively. In matrix form this canbe
depictedas �8$�Q9AX �� >A@ � ��9AG � � �� > H �� >A@ � � (7)

This equationcan be solved by the iterative Gauss-Seidel
Method in which the updatedcomponentsof the deformation
field ( � >A@ � � C >A@ � � E >�@ �

) arecomputedfrom ( � > � C > � E > ) in ev-
ery stepusing �� >�@ � � � XYH[Z�G � �6\ � � �� > H/]9 �8�� (8)

B. Finite Elements

The Finite Elementsmethod[20] relieson interpolatingthe
solutionusingasnodalpointstheverticesof a discretizationof
thedomain,by meansof a linear formulationwherethevalues
at thenodalpointsaretheunknowns.

In the 3D case,we have selecteda tetrahedralmesh;andin
the2D case,we havechosena triangularmesh.Therefinement
of themeshis chosenasafunctionof thelevel of detailwehave
assumed.In amulti-resolutionscheme,wegenerateameshwith
very few trianglesat thetop level of theresolutionpyramidand
increasethe numberof trianglesaswe move to higherresolu-
tions.

In orderto acceleratethemeshgeneration,wewill assignbig-
gerelementsto lessdetailedzonesandsmalleronesto high in-
formationregionsof thedataset.

The algorithmhasbeenimplementedusingfirst andsecond
orderapproximationsof the correlationcoefficient. Sincethe
resultsderived from first andsecondorderapproximationsare
notsignificantlydifferent,wewill only presentresultsfrom first
orderapproximations.

V. RESULTS

In this sectionwe presentthe resultsfor the registrationof
severalmedicaldatasets.To comparetheperformance,wehave
usedthe samesimilarity measureand the sameregularization
term.

Figure1ashowsasmallregionof anaxialprotondensity(PD)
MR imageandfig. 1b shows thesameregion in a T2 weighted
image,thoughslightly deformedby a syntheticfield. Thesyn-
thetic field hasbeengeneratedby smoothinga randominitial
vectorfield. Figure2ashows a detailof thesyntheticdeforma-
tion field. Figure2b shows the deformationfield registeredby
usingthe Euler-Lagrangemethod,with GY�_^+` a , window sizeE �Tb , using20 iterationsandinitializedwith thezerosolution.
Figure2cshowsthedeformationfield registeredby usingthefi-
nite elementsmethod,with Gc��^d` a , window size E �2b , anda
triangularmeshof 312trianglesand177nodes.Finally, fig. 2d



shows the deformationfield registeredby usingdecoupledop-
timization, wherethe initial solution hasbeenobtainedusing
templatematchingwith a searchwindow of size Efe�gBh 46ikj �lb
anda similarity window of size E e UnmoUqp h 4 Usr ) �ut . Thelocal op-
timization hasbeenconstrainedto an amplitudeof five pixels,GJ�T^d` a , andusing7 iterationsto thewholedataset.

a) b)

Fig. 1. MRI imagesPD (a)andT2 (b)
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Fig. 2. Syntheticdeformationfield (a) anddeformationfields obtainedwith
Finite Elements(b), Euler-Lagrange(c) andoptimization(d)

Figure3ashowsanoverlayof T1w andT2w MR imagescor-
respondingto two differentpatientsandthe surfacemodelsof
their ventricles. Figure 3b shows the estimateddeformation
field usingthe decoupledoptimizationapproachoverlaid onto
the models.Theyellow ventricleis consideredto be the refer-
ence,andthegreenventricleis consideredto bethecurrent.

In orderto comparetheresultsobtainedby thethreemethods,
fig. 4 shows a detailof onecoronalsectionof the referenceT1
imageandthevectorfieldsonthatsectionwill beprojectedonto
it. Figure4b-dshowstheresultsobtainedfor thethreemethods,
EL (a),FE(b) andDO (c),with similarparametersto thoseused
in thepreviousexperiment.

Fig. 3. Above: ventriclemodelsgeneratedwith theMRI T1 (green)andwith
the MRI T2 (orange)from two differentpatientsandoriginal images.Below:
Three-dimensionaldeformationfield overlaidon a ventriclemodel. Hot colors
meanslargedeformations

As a measureof quality, the absolutecorrelationcoefficient
hasbeencomputedin differentcases,which summarizestable
1. Resultsfor asyntheticimagenotshown arealsodisplayed.

VI . CONCLUSIONS AND FURTHER RESEARCH

In this paperwe have introduceda novel approachto general
nonrigid registrationproblemsbasedon DecoupledOptimiza-
tion (DO) solutionto a variationalformulationandit hasbeen
comparedwith two othersolutionsto thesamevariationalprob-
lem: Euler-Lagrange(EL) andFinite Elements(FE). Although
the approachesarequitedifferentin nature,they all give simi-
lar andmeaningfulresultswhenusedwith CorrelationCoeffi-
cientasthesimilarity measureandeq.(3) astheregularization
term.Themaindifferencesbetweenthesemethodsarerelatedto
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Fig. 4. T1 MRI coronalsection(a) anddeformationfieldsobtainedwith Euler-
Lagrange(b), Finite Elements(c) anddirectoptimization(d)

TABLE I
ABSOLUTE CORRELATION COEFFICIENTS

Registration Synthetic T2—PD T1—T2
Not deformed 1 0.76 0.73

EL 0.84 0.71 0.69
FE 0.80 0.70 0.65
DO 0.85 0.73 0.70

computationalcost,andpossibilityof incorporatingothersimi-
larity measuresor regularizationterms.Thecomputationalcost
of Euler-Lagrangeis smaller than Finite Elementsand much
smaller than Optimization. Nevertheless,the DO methodal-
lows an easyincorporationof any similarity measure,suchas
mutual informationbasedones,or regularizationterm. More-
over, its extensionto dealwith multivalueddatais alsopossible,
asit usesalgorithmsdevelopedto dealwith tensordatain order
to getgoodinitial deformationfieldsandtheoptimizationsolu-
tion is powerful enoughto incorporatethetensorreorientations.
Nevertheless,thisis still somethingweareinvestigatingandthat
will bereportedin a forthcomingpaper.

Otherresearchefforts in this areaarefocusedon comparing
with otheroptimizationalgorithms,suchasfor examplestochas-
tic, moreefficient in termsof computationalload andwith the
ability of jumping out local optima, and in high performance
implementationsusingclustersof low costpersonalcomputers
(beowulfs). Our motivation is to obtain a robust andefficient
computationaltoolwhichcanbeeasilyreconfiguredto dealwith
differentregistrationproblemsin a clinical environment.
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